
Bootstrapping a (New?) 
LHC Data Transfer 

Ecosystem
Brian Paul Bockelman, Andy Hanushevsky, Oliver Keeble, Mario Lassnig, 

Paul Millar, Derek Weitzel, Wei Yang




Why am I here?
• The announcement in mid-2017 that Globus Toolkit support would end set off a flurry of 

activity.


• Some of it was toward shorter-term collaborations around community support of this 
software.  See https://gridcf.org


• This reinvigorated existing work around replacing various Globus Toolkit components; the 
most pressing are:


• Grid Security Infrastructure (GSI): An authentication and authorization infrastructure 
based around concepts of identity and X509 proxies.


• GridFTP: A FTP-like transfer protocol that build on top of GSI, supports third-party-
transfers, and multi-TCP-stream transfers.


• Luckily, there’s a huge amount of prior effort to draw on, some dating back several years.


• Hence it’s not really “new.”  Thanks to the work of many people, what’s shown here is 
just some clever re-arrangements!

!2

https://gridcf.org


WLCG Transfer Ecosystem 
Demonstrator

• There’s a need to organize the entire vertical 
stack to have a cohesive solution approach.


• We benefit little if multiple storage elements 
take mutually-incompatible approaches.


• Same applies for moving across the data 
management / file transfer / storage layers.


• Put together a Google group to coordinate this 
activity and start to scale:


• Feel free to join!


• https://groups.google.com/forum/#!forum/
wlcg-http-transfer

Rucio

FTS

dCache

PhEDEx

XRootD

EOS DPM

StoRM

Data Management Layer

File Transfer Layer

Storage Layer

!3

https://groups.google.com/forum/#!forum/wlcg-http-transfer
https://groups.google.com/forum/#!forum/wlcg-http-transfer


Transfers Under GridFTP - 
Where we are today!

Storage B

File 
Transfer 
Service

Request:  Start receiving file 1. 
Response: OK, listening on port 1234

Storage A

Request:  Send file 1 to port 1234 on Storage B. 
Response: OK, in progress!

Send bytestream over TCP

• FTS must be authorized to talk to both endpoints. 
• Endpoints support the same protocol (GridFTP). 
• Queueing (in implementation) is in FTS layer.

!4



Alternate TPC Model - 
Where we might go!

File 
Transfer 
Service

Storage A

Request:  Send file 1 to URL on Storage B. 
    - Use given authentication with Storage B. 
Response: OK, in progress!

Storage BGET / PUT

• FTS only communicates with the active storage (A). 
• FTS provides URL for B and authz token. 

• Transfer from A->B may occur on any mutual protocol. 
• FTS relies on storage A for heavy lifting.

!5



HTTPS / WebDAV
• WebDAV is a set of HTTP extensions that provide a more 

standardized, file-like API with minimal HTTP changes.


• Example: “MKCOL” (make collection) is mostly equivalent to a 
POSIX mkdir().


• Another WebDAV extension is COPY, which instructs the WebDAV 
server to copy to/from a given URL.


• Precisely what is needed for the alternate TPC model!


• The URL is given in the Source header; not necessarily HTTPS!

COPY /store/path HTTP/1.1 
Host: storage.site1.com 
Source: https://storage.site2.com/store/path.src

!6



HTTPS / WebDAV - 
Authorization Step

• It’s clear FTS can use its favorite existing mechanism when communicating 
with the “active” SE (Storage A).


• How does it transfer a credential to the active SE for use with Storage B?


• In X509-land, we have the concept of delegating a credential for this 
movement.


• Unfortunately, the delegation procedure is only “standardized” at the 
transport layer (TCP).


• The WLCG community has a somewhat ad-hoc* standard for this based 
on SOAP, as defined by GridSite.


• We advocate a token-based method for authorizing the transfer instead.

* https://egee-jra1-data.web.cern.ch/egee-jra1-data/GridSiteDelegation/HEAD/doc/glite-security-delegation-interface/DelegationInterface.html
!7



Reminder: 
Here’s our picture

storage.site1.com storage.site2.com

FTS
(fts_url_copy)

Request 1:
COPY /store/path HTTP/1.1
Host: storage.site1.com
Source: https://storage.site2.com/store/path.src
Authorization: Bearer abcdef
Copy-Header: Authorization: Bearer 12345

Request 2:
GET /store/path.src HTTP/1.1
Host: storage.site2.com
Authorization: Bearer 12345

!8

Here, I illustrate the case where the actual copy also goes over HTTP



HTTP Request

• Example request from FTS to “active” SE: 
COPY /store/path HTTP/1.1  
Host: storage.site1.com  
Source: https://storage.site2.com/store/
path.src  
Authorization: Bearer abcdef  
Copy-Header: Authorization: Bearer 12345 

•

HTTP verb Resource at active SE (destination)

Source URL
Token for active SE

Token for inactive SE

Indication to copy header to GET request

http://storage.site1.com
https://storage.site2.com/store/path.src
https://storage.site2.com/store/path.src


“Real” Request

COPY /user/uscms01/pnfs/..truncated../LoadTestDownload/LoadTest07_UCSD_B0_nI3SsXhd0iT5RF6W_286 HTTP/1.1 
User-Agent: fts_url_copy/3.7.7 gfal2/2.15.0 neon/0.0.29 
TE: trailers 
Host: red-gridftp12.unl.edu:1094 
Source: https://gftp-1.t2.ucsd.edu:1094/cms/..truncated../LoadTest07_UCSD_B0 
X-Number-Of-Streams: 3 
Secure-Redirection: 1 
Authorization: Bearer eyJhbGciOi..truncated..NYU5gx6yrZhKpdCt2SedVocIhZsuqKNUNZcRhXj6tBjxozA 
ClientInfo: job-id=dc417124-30d7-11e8-bd67-5254000b9cba;file-id=1080;retry=0 
TransferHeaderAuthorization: Bearer eyJhbGci..truncated..5_-Z7XQw 
RequireChecksumVerification: false

Here’s an example request from yesterday:



Get Your Tokens!
• In the latest FTS release, at the start of a transfer, FTS will:


• Generate a SciToken* if a token issuer is specified (see 
next presentation!).


• If that fails, use the X509 proxy to generate a macaroon 
(see Paul’s presentation on macaroons).


• If that fails, fall back to gridsite-based delegation.


• The multiple fallbacks are designed to provide a smooth 
transition off X509!

*currently authenticates with token server using X509 proxy, but hopefully not in future

https://indico.cern.ch/event/587955/contributions/2936866/
https://indico.cern.ch/event/587955/contributions/2936866/
https://indico.cern.ch/event/587955/contributions/2936441/


Working up the Stack
• We have an initial prototype functioning as XRootD plugins.


• Stable enough to put at production servers at three different sites.


• Hopefully this can benefit EOS and DPM as well!


• dCache has test code for SciTokens and macaroons are in 
production.


• GFAL2, DAVIX, and FTS have patches in release (or testing) 
supporting the end-to-end.


• PhEDEx changes available as patch and Rucio changes are in a 
testing branch.
Working the vertical: patches across about a dozen software packages.

!12



Timeline to Success?
• Given the bleeding edge version of software (and appropriate configurations), we 

have shown HTTPS can technically replace GridFTP use for all storage used in the 
WLCG.


• Work for the remainder of 2018:


• Demonstrate the full compatibility matrix of SEs in production.


• Design and perform scale tests.


• More importantly, what’s next?  Need to work with a few experiments (LHC or 
otherwise) to determine schedule and future intent.


• Should we set a bold goal like “All WLCG sites supporting CMS must 
support non-GridFTP third party copy in 2019”?


• Otherwise, there’s danger this effort will fizzle out!


